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Two-phase viscous gravity current theory has numerous applications in the natural
sciences, from small-scale lava, sedimentary and glacial flows, to large-scale flows
of partially molten mantle. We develop the general equations for two-phase viscous
gravity currents composed of a high viscosity matrix and low viscosity fluid for both
constant volume and constant flux conditions. A loss of fluid phase is taken into
account at the current’s upper boundary and corresponds to the degassing of a lava
flow or loss of water in sedimentary flows. As the current spreads, its surface increases
and fluid loss is facilitated, which modifies the mixture density and viscosity and thus
the current’s shape; hence spreading of the flow affects fluid loss and vice-versa. Our
results show that two-phase gravity currents retain and transport the fluid out to
large distances, but the fluid is almost entirely lost within a region of finite radius.
This ‘loss radius’ depends on the flow’s volume or flux, fluid and matrix properties as
well as on the size of fluid parcels or matrix permeability. Application to lava flows
shows that degassing occurs over a large area, which affects gas release and transport
in the atmosphere.

1. Introduction
Low-Reynolds-number gravity currents propagating over a rigid horizontal surface

involve the spreading of a viscous material under its own weight. Viscous gravity
current theory has numerous applications in geosciences, from the small to
intermediate scale emplacement of lava, mud and ice flows, to the large-scale flow of
mantle plume heads, deformation of weak continental crust under its own weight and
the flow of polar ice caps (Huppert 2006).

The propagation of an isothermal buoyant fluid of constant viscosity over a
horizontal surface has been described in detail by Huppert (1982). Gravity currents
in real geological settings are, however, very complex, geometrically and physically.
Many geological gravity currents are comprised of viscous fluids with temperature-
dependent viscosity and/or buoyancy and are also multi-component and multi-phase
materials. This is the case for lava flows and plume-heads spreading beneath a
rigid surface; in particular, as they spread, fluid cools and becomes more viscous
and dense. Unlike isothermal or constant viscosity gravity currents, cooling currents
with temperature-dependent viscosity or buoyancy are not self-similar and develop
various morphologies as they flow (Stasiuk, Jaupart & Sparks 1993; Bercovici 1994;
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Bercovici & Lin 1996). Analogue experiments have been performed to study the
effects of surface cooling and the formation of a solid crust on the spreading of
viscous gravity currents, as well as the effects of cooling on the flow of fluid with
temperature-dependent viscosity (Hallworth, Huppert & Sparks 1987; Crisp & Baloga
1990; Fink & Griffiths 1990; Griffiths & Fink 1993; Stasiuk et al. 1993).

In the case of a two-phase mixture of matrix and fluid, the spreading of the current
is affected by the presence of a second phase. Jaupart (1991) demonstrated that a
thick lava dome containing a compressible gas phase and characterized by a relatively
high eruption rate and high viscosity behaves as a compressible fluid and flows less
rapidly than its incompressible counterpart. The effects of the presence and settling
of particles from high-Reynolds-number suspension gravity flows, such as pyroclastic
flows, on the buoyancy and compressibility of the flow have been studied theoretically
by Bonnecaze, Huppert & Lister (1993) and Timmermans, Lister & Huppert (2001).
Particle-driven gravity currents have been described using the box model of Huppert &
Simpson (1980), which considers the flow as a series of equal volume boxes of
given shape (cylinder or rectangular) whose properties do not change horizontally
(Bonnecaze et al. 1998; Hallworth, Huppert & Hogg 1998).

The emplacement of multi-component viscous gravity currents, such as lava or mud
flows, involves a number of physical processes that cannot be studied with analogue
experiments or single-phase fluid as usually considered (Huppert 1982; Jaupart 1991;
Bercovici 1994). The presence of a second phase (gas in lava flows, water in mud flows,
melt in mantle flows) modifies not only the compressibility, buoyancy and viscosity of
the mixture, but generates interfacial forces that introduce strong complexity relatively
to the single-phase theory. The density and pressure difference between the two phases
cause relative motion between the phases and compaction of the matrix in more than
just the vertical direction.

As the current spreads, its surface increases which facilitates the escape of the fluid
phase. But as the current loses fluid, its physical properties, density and viscosity,
change, which, in turn, modifies the spreading of the current. In this paper we
examine how the spreading of a two-phase gravity current affects the loss of fluid
and conversely, how the loss of fluid affects the spreading of the current.

Such complex two-phase flows cannot be treated simply with constant viscosity
single-phase single-component flows and necessitate a more complete theory. The
dynamics of two-phase media has been well studied. Two-phase theories with
applications in magma dynamics (McKenzie 1984; Spiegelman 1993a , b, c), glaciology
(Fowler 1984) or inner core growth (Sumita et al. 1996), are among the relevant
theories for our study. We use the approach developed by Bercovici, Ricard &
Schubert (2001a , b), Ricard, Bercovici & Schubert (2001) and Bercovici & Ricard
(2003) because it explicitly accounts for a difference in pressure between phases, as
well as surface tension and isotropic damage, i.e. the creation of interfacial energy by
deformational work, which may be added later in the model.

In this paper we first develop the general equations for the gravitational spreading
over a horizontal surface of an axisymmetric two-phase gravity current composed
of viscous matrix and fluid. The matrix and fluid have different densities and are
both incompressible; the matrix has a much higher viscosity than the fluid. As
in the single-phase gravity current theory, we derive the integrated equations over
the thickness of the flow, for the evolution of the current’s thickness and volume
fraction of fluid with time and radial coordinate. These equations take into account
variations of the flow density and viscosity with fluid volume fraction, relative motions
between fluid and matrix and the pressure difference between phases. A loss of
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fluid phase is considered at the top of the flow as the fluid is less dense than the
matrix.

Following the development of the general equations, we solve numerically the
equations for both constant volume and constant volume–flux flows and propose
different scaling laws. The shape of a two-phase viscous gravity current is shown
to vary with the dependence of the mixture viscosity on the fluid volume fraction.
We derive a characteristic time for fluid loss as a function of the fluid and matrix
physical properties and volume or flux of the flow. We also find a characteristic
thickness for a significant fluid loss and a characteristic radius over which fluid loss
occurs.

Finally, we apply these results to describe the degassing of different types of lava
flows, in particular flood basalt events. Indeed, such large lava flows have released
large quantities of gas into the Earth’s atmosphere and might have had a large
impact on the atmosphere composition and circulation (Self, Widdowson & Jay 2006).
Explosive eruptions of lava and gas mixtures release buoyant hot gas directly at the
vent. Large explosive basaltic eruptions might release hot gas and tephras in the lower
stratosphere, that are then transported by stratospheric winds (Thordarson & Self
1993). Giant ash clouds generated by super-eruptions of felsic lavas can spread within
the stratosphere, and reach radii at which they become sensitive to Coriolis forces,
generating cyclonic features (Baines & Sparks 2005). Effusive eruptions, however, lead
to the transport of gas within the lava, and to its release far from the vent, with
less buoyancy, implying a different mode of transport of gas into the atmosphere;
as flood basalt lava flows may spread over several hundreds and even thousands of
kilometres (Ho & Cashman 1997), this effect may be important. The time scale and
surface area over which processes such as lava emplacement and degassing occur
influence atmospheric composition and dynamics. For example, for such high volume
flows, the radius over which degassing occurs may approach the Rossby radius of
deformation (Gill 1982), leading to a possible cyclonic activity.

2. Theory
2.1. Introduction to the theory

The equations for the spreading of a two-phase gravity current are derived from the
equations of motion and mass conservation for a two-phase mixture. We consider
two different cases for the flow of mixture: a flow of suspended fluid particles within
matrix and Darcy flow of porous matrix with connected pores full of fluid. In the
second case, a pressure difference exists between the two phases. However, we show
that this pressure difference has no effect on fluid loss as long as the compaction
length, i.e. the extent over which the matrix collapses and fluid is expelled under an
applied compressive load, is smaller than the flow thickness. We derive the equations
of motion in this simple physical limit for Darcy flow, and in the general case for a
suspension flow. The final equations governing the evolution of the thickness h and
vertically averaged volume fraction of fluid φ of the gravity current will be given in
their dimensional and dimensionless forms.

Following this analysis, the non-dimensionalization of the equations shows that, for
most natural flows, these complex equations can be reduced to a simpler form as the
horizontal separations of the phase can in general be neglected in comparison with
the terms of spreading and degassing. The reduced equations are solved numerically
and results are analysed in a separate section.
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2.2. Equations of motion

We consider an axisymmetric gravity current composed of a mixture of two phases,
matrix and fluid, spreading over a horizontal surface. Matrix and fluid are both
incompressible but have different physical properties. The theoretical averaging model
of Bercovici et al. (2001a), Ricard et al. (2001) and Bercovici & Ricard (2003) is used
to describe the dynamics of a simple two-phase mixture undergoing creeping flow, i.e.
for which inertia and acceleration are negligible.

2.2.1. Mass conservation

Mass conservation of fluid and matrix assumed incompressible gives

∂ϕ

∂t
+ ∇ · ϕvf = 0, (2.1)

∂(1 − ϕ)

∂t
+ ∇ · (1 − ϕ)vm = 0, (2.2)

where ϕ is the volume fraction of fluid, v is the velocity and subscript m stands for
matrix and f for fluid. By addition of (2.1) and (2.2), we obtain

∇ · v̄ = 0, (2.3)

with q̄ = (1 − ϕ)qm +ϕqf and �q = qm − qf , for any quantity q . Since vm = v̄ +ϕ�v,
then ∇ · vm = ∇ · (ϕ�v).

2.2.2. Momentum equations

The viscosity of the matrix μm is assumed much larger than the viscosity of the
fluid μf , (μm � μf ). Creeping flow is valid for a two-phase medium even when the
fluid phase is low viscosity as long as the fluid fraction is small and if the interaction
drag force between fluid and matrix is high, due, for instance, to a low permeability.
For this study, we neglect the treatment of damage and surface tension prescribed in
the original theory of Bercovici et al. (2001a) and Bercovici & Ricard (2003).

The momentum equation for each phase is given by (Bercovici & Ricard 2003)

0 = −ϕ
[
∇Pf + ρf gz

]
+ c�v (2.4)

0 = −(1 − ϕ) [∇Pm + ρmgz] + ∇ · [(1 − ϕ)τm] − c�v + �P ∇ϕ, (2.5)

where P represents pressure, g acceleration of gravity, ρ is density and c is the
interfacial drag coefficient, which controls the resistance to relative movement between
phases. The coefficient c may be a function of the fluid volume fraction and we assume
that

c = c0ϕ
n, (2.6)

where c0 and n are constants; this assumption is valid if we consider either Darcy flow,
in which the fluid forms an interconnected network, or a suspension flow, if the fluid
phase is a suspension within the matrix. In the case of Darcy flow, McKenzie (1984)
and Bercovici et al. (2001a) have shown that c = μf ϕ2/k, with k the permeability.
For tubule connections k = k0ϕ

2, where k0 is a reference permeability; this gives n = 0
and c0 = μf /k0 for Darcy flow. For suspension flow, we show in Appendix A, that
n = 1 and c0 = 9μm/2r2

b , where rb is the radius of the fluid particles in suspension
(e.g. gas bubbles).

The quantity τm is the viscous stress tensor averaged over the volume of the
matrix. Viscous stress associated with deformation of the fluid is negligible compared
to pressure forces because of the low viscosity of the fluid relatively to that of the
matrix.
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As in all single-phase gravity current theories (Huppert 1982; Lister & Kerr 1989;
Bercovici & Lin 1996), horizontal variations in stress and velocity are negligible
compared to vertical variations. Radial motion is similar to the flow in a thin disc-
like cylindrical channel, with a typical edge radius R much greater than the typical
thickness H of the flow. For each phase j = f or m, we write the velocity as
vj = (uj , 0, wj ) in cylindrical coordinate, with uj � wj .

Viscous resistance is the primary force acting against the flow of material. A simple
scaling analysis of (2.5) along the r-direction shows that the dynamic pressure Pm

scales with μmUR/H 2, where U is a characteristic radial velocity. The main component
of the divergence of the stress tensor scales as μmW/H 2 (where W is a vertical velocity
scale and W � U ); this is negligible in comparison with the vertical pressure gradient
scale Pm/H , using the scaling for Pm provided above. Therefore, no component of the
stress tensor remains in the vertical component of (2.5). Multiplying (2.4) by (1 − ϕ)
and subtracting the product of 2.5 by ϕ, we get

−∇ [(1 − ϕ)�P ] − (1 − ϕ)�ρgz +
∂

∂z

[
(1 − ϕ)μm

∂um

∂z

]
r − c

ϕ
�v = 0, (2.7)

where um is the horizontal component of matrix velocity, and r and z the unit vectors
in the radial and vertical directions, respectively.

In order to derive the equations which describe the evolution of thickness and fluid
fraction, we seek the expressions for two horizontal components of the velocity, i.e.
um and uf , or alternatively um and �u. This requires solving for the fluid and matrix
pressure first.

2.2.3. Pressure

In the absence of damage and surface tension, the difference in pressure between
the two phases arises from viscous resistance due to dilation and compaction. If
we consider that the fluid phase forms a suspension, then there is no difference in
pressure between the phases and we have P = Pm = Pf , �P = 0. From (2.4) we
obtain that �v = ϕ(∇P + ρf gz)/c. No component of the stress tensor remains in the
vertical component of (2.5) (see discussion in § 2.2.2) and the sum of (2.4) and (2.5)
gives

∂P

∂z
= −ρ̄g. (2.8)

As shown below, this equation is also valid for a permeable flow (n = 0) in the case
where the typical thickness of the flow is larger than the vertical extent over which
the matrix viscously deforms and compacts, because the difference in pressure �P

between the phases is then negligible.
With the condition μf � μm, Bercovici & Ricard (2003) show that, for permeable

flow

�P = −Kμm

ϕ
∇ · vm, (2.9)

where K , a dimensionless factor accounting for pore or grain geometry, is typically
of order 1.

For simplicity, we first consider that ϕ varies linearly as a function of z with a small
variation θ/h.

ϕ = φ +
θ

h

(
z − h

2

)
, (2.10)
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where z = h corresponds to the surface of the matrix, φ is the average value for ϕ

over the thickness of the flow and we assume θ � φ. We thus have ∂ϕ/∂z = θ/h

and ϕ ∼ φ since θ � φ; the vertical variation of ϕ is thus negligible when integrating
over z. Large variations of ϕ with z are examined in Appendix E.

Using (2.3), (2.4), (2.6) with n = 0 (permeable flow with permeability k = k0φ
2),

(2.9) and for a typical edge radius R much greater than the typical thickness H , we
obtain

�P = −Kμm

ϕ
∇ · (ϕ�v) = −Kμm

c0

[
2
θ

h

(
∂Pf

∂z
+ ρf g

)
+ ϕ

∂2Pf

∂z2

]
. (2.11)

Replacing for �P in the vertical component of (2.7) and using (2.4) to express c�w

as a function of Pf gives

(1−ϕ)ϕδ2 ∂3Pf

∂z3
+(3−4ϕ)

θ

h
δ2 ∂2Pf

∂z2
−

(
1 + 2

θ2

h2
δ2

)
∂Pf

∂z
− ρ̄g −2

θ2

h2
δ2ρf g = 0, (2.12)

where δ = (Kμm/c0)
1/2 is the viscous compaction length, i.e. the typical thickness over

which viscous resistance to matrix squeezing occurs.
A simple scaling analysis emphasizes the importance of the different terms in (2.12)

(though this equation is solved in the general case in Appendix B). A characteristic
rate of vertical phase segregation may be given by �ρg/c0 (see for instance (2.7)), and
this is associated with a decrease in total thickness with time due to fluid loss noted
Ḣf . We can compare this fluid-loss collapse rate to that due to simple spreading
by considering the thickness evolution for a single-phase gravity current (which, as
shown later, is a limiting case for ϕ → 0; Huppert (1982))

∂h

∂t
=

ρmg

3μmr

∂

∂r

(
h3r

∂h

∂r

)
. (2.13)

The characteristic collapse rate due to spreading Ḣs is derived from (2.13) by scaling
analysis, using the volume scale V0 = πHR2

Ḣs ∼ ρmgH 4

μmR2
=

ρmgH 5π

μmV0

. (2.14)

Both collapse processes are significant and play a similar role when the rate of collapse
due to spreading and the rate of collapse due to fluid loss are equivalent (Ḣs ∼ Ḣf ),
i.e. when the thickness of the flow is

H ∼
(

V0�ρμm

πρmc0

)1/5

. (2.15)

By scaling vertical derivatives with 1/H and h with H in (2.12), we obtain

ν2(1 − ϕ)ϕ
Pf

H
+ ν2(3 − 4ϕ)θ

Pf

H
− (1 + 2θ2ν2)

Pf

H
− ρ̄g − 2θ2ν2ρf g = 0, (2.16)

with ν = δ/H .
For this analysis, we consider flows for which the compaction length δ is smaller

than the characteristic thickness H , such that ν2 = δ2/H 2 � 1. As demonstrated later
in the paper (see §§ 2.4 and 5.1.2), this assumption is relevant for most two-phase
viscous flows in nature. Thus, given ν2 � 1, only two terms in (2.16) remain, which
yield

∂Pf

∂z
= −ρ̄g. (2.17)
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Thus, as in the single-phase theory, the hydrostatic assumption is a good
approximation for the fluid’s vertical pressure gradient in a two-phase viscous gravity
current for which ν2 � 1 (see Appendix B for more details).

We have then, for θ � φ,

Pf = Pa + ¯̄ρg(h − z), (2.18)

where Pa is the ambient pressure at z = h and ¯̄q = (1 − φ)qm + φqf , for any quantity
q . Using (2.17) in (2.11) gives an estimate for �P

�P ∼ �ρgH
δ2

H 2

θ

h/H
(2 − 3φ), (2.19)

and thus �P � Pf for ν2 = δ2/H 2 � 1, which shows that viscous resistance to
compaction is not the limiting mechanism for fluid loss; the loss of fluid is controlled
by fluid escape by buoyant permeable Darcy flow rather than by matrix squeezing.
If the compaction length were of the same order of magnitude as, or larger than, the
characteristic thickness H , �P would be non-negligible and the loss of fluid at the
surface of the current would be limited by viscous resistance to matrix deformation
(see Appendix B).

2.2.4. Horizontal velocities

Given that �P is negligible relative to Pf , one can readily derive the expression
for the radial velocities um and �u using the expression of Pf (2.18), valid for both
Darcy (considering and ν2 � 1) and Stokes flows, with ϕ ∼ φ. Note that only the
average value of the volume fraction of fluid remains in the equation, and vertical
variations of porosity are negligible. The radial component of (2.5) becomes

μm

∂

∂z

(
(1 − φ)

∂um

∂z

)
=

∂Pf

∂r
= ¯̄ρg

∂h

∂r
− �ρg(h − z)

∂φ

∂r
. (2.20)

To obtain an expression for um, a free-slip boundary condition is used at the surface
of the current z = h. This condition is appropriate for gravity currents occurring at
the surface of the Earth, such as lava flows, or if the viscosity of the surrounding
fluid is less than or not greatly different from the current viscosity (Huppert 1982).
Using the boundary conditions ∂um/∂z = 0 at z = h, um = 0 at z = 0, and integrating
(2.20) twice we obtain

um =
g

(1 − φ)μm

[
¯̄ρ

∂h

∂r

(
z2

2
− hz

)
− �ρ

(
−z3

6
+

hz2

2
− h2z

2

)
∂φ

∂r

]
. (2.21)

For φ = 0 (2.21) gives the expression for the radial velocity in a single-phase gravity
current.

Similarly, the radial component of (2.4) gives an expression for �u, with c = c0ϕ
n

�u =
φ1−n

c0

∂Pf

∂r
= φ1−n g

c0

[
¯̄ρ

∂h

∂r
− �ρ(h − z)

∂φ

∂r

]
. (2.22)

In both (2.21) and (2.22), the variations in fluid and matrix velocities result from
radial gradients in thickness and volume fraction of fluid.

2.3. Shape and volume fraction of fluid

As for the single-phase gravity current theory, we apply the conservation of mass for
both phases to derive the evolution of current thickness and volume fraction of fluid.
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We consider the general case of a fluid phase less dense than the matrix (ρf < ρm),
and a matrix denser than the environment, such that the fluid ascends relative to
the matrix and fluid loss occurs at the upper deformable boundary of the current,
z = h(r, t). We also consider the possibility of injection of mixture of fluid and matrix
with a fixed volume fraction of fluid φ0 into the current through the lower boundary
(z = 0) at a given vertical velocity W . For simplicity, the velocity W is equal for both
fluid and matrix and depends only on r .

Conservation of the masses of fluid and matrix give, for θ � φ,

∂

∂t

[
2πr

∫ h

0

φdz

]
dr = − ∂

∂r

[
2πr

∫ h

0

φuf dz

]
dr + φ(2πrdS)n · �v|z=h

+ 2πrφ0W (r) dr (2.23)

∂

∂t

[
2πr

∫ h

0

(1 − φ)dz

]
dr = − ∂

∂r

[
2πr

∫ h

0

(1 − φ)umdz

]
dr

+ 2πr(1 − φ0)W (r) dr, (2.24)

where 2πrdS is the area of the incremental surface over which the fluid is lost and
n is the vector normal to the surface. The term proportional to �v represents fluid
loss (fluid velocity relative to matrix velocity at the surface). Equations (2.23) and
(2.24) are equivalent to the integrated form of (2.1) and (2.2) over the thickness of
the current.

One can readily show that

dSn · �v|z=h = �w|z=hdr +
∂h

∂r
�u|z=h dr. (2.25)

By addition of (2.23) and (2.24) and simplification of (2.24), we obtain the following
equations in the general case:

∂h

∂t
= −1

r

∂

∂r

[
r

∫ h

0

(um − φ�u) dz

]
+ φ

[
�w +

∂h

∂r
�u

]
+ W (r) (2.26)

∂((1 − φ)h)

∂t
= −1

r

∂

∂r

[
r

∫ h

0

(1 − φ)umdz

]
+ (1 − φ0)W (r). (2.27)

Taking into account fluid loss in the equations requires the expression for �w at
the surface of the matrix. Considering ν2 � 1 and θ � φ, (2.4) and (2.17) give

�w(z = h) = −�ρg

c0

φ1−n(1 − φ), (2.28)

which is valid for both Darcy and suspension flows with n = 0 or n = 1. (Again,
large variations of ϕ with z are examined in Appendix E for Darcy flow.)

Using expressions (2.21) and (2.22) for um and �u and combining (2.26) and (2.27),
we obtain the following equations for the evolutions of the thickness and average
volume fraction of fluid of the current with time and radial coordinate, using ν2 � 1
for Darcy flow and θ � φ:

∂h

∂t
=

g

rμm

∂

∂r

[
¯̄ρh3r

3(1 − φ)

∂h

∂r
− �ρh4r

8(1 − φ)

∂φ

∂r

]
+

g

rc0

∂

∂r

[
¯̄ρφ2−nhr

∂h

∂r

−�ρφ2−nh2r

2

∂φ

∂r

]
+ W (r) − gφ2−n

c0

[
�ρ(1 − φ) − ¯̄ρ

(
∂h

∂r

)2
]

(2.29)
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∂φ

∂t
=

g

μm

∂φ

∂r

[
¯̄ρh2

3(1 − φ)

∂h

∂r
− �ρh3

8(1 − φ)

∂φ

∂r

]
+

g

c0

(1 − φ)

rh

∂

∂r

[
¯̄ρφ2−nhr

∂h

∂r

− �ρφ2−nh2r

2

∂φ

∂r

]
+

(φ0 − φ)

h
W (r) − gφ2−n(1 − φ)

c0h

[
�ρ(1 − φ) − ¯̄ρ

(
∂h

∂r

)2
]

,

(2.30)

where ¯̄ρ = (1 − φ)ρm + φρf , and n = 1 for suspensions or n = 0 for Darcy flow.
Both evolution equations are composed of four different parts. The first term on

the right-hand side of each equation represents changes of thickness or fluid fraction
due to current spreading; horizontal phase separation leads to the second term on the
right-hand side. Both spreading and phase separation are governed by radial gradients
in thickness and fluid fraction. The third term is a source term, which is used in the
case where material is injected into the current through one of its boundaries. The
fourth and last term represents the loss of fluid through the surface of the current.

When φ = 0, the only remaining term in (2.29) corresponds to the single-phase
theory.

2.4. Constant volume versus constant flux

There are two classic cases of gravity currents representing isolated masses or masses
fed by injection of material. These are called constant volume currents or constant
flux currents. The net volume flux into the current is

Q = 2π

∫ ∞

0

Wr dr (2.31)

which we assume constant. For simplicity, the velocity of injected material W is
defined to be a Gaussian function of r , centred at r = 0, with half-width a

W (r) =
Q

πa2
e−r2/a2

. (2.32)

Employing this source function allows us to examine the effects of the characteristic
size of the source a on the current’s shape and on fluid loss. In the limit a → 0 (2.32)
is equivalent to the point-source boundary condition h(0) → ∞, as used by Huppert
(1982) for a single-phase gravity current. The net volume of matrix is obtained by
integrating its thickness over the area

2π

∫ ∞

0

(1 − φ)hr dr = (Qt + V0)(1 − φ0), (2.33)

where V0 is the initial volume of the current and Q = 0 for constant volume currents.

2.5. Non-dimensionalization

The dimensional governing equations for a two-phase viscous gravity current are
(2.29) and (2.30) for ν2 � 1 and θ � φ. We non-dimensionalize these equations using
a vertical scale H , a radial scale R and a time scale T given by

H =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
V0�ρμm

πρmc0

)1/5

if Q = 0

(
Qμm

πρmg

)1/4

if Q > 0

(2.34)
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T =
c0H

�ρg
=

⎧⎪⎪⎨
⎪⎪⎩

1

g

(
V0μmc4

0

πρm�ρ4

)1/5

if Q = 0

c0

�ρg

(
Qμm

πρmg

)1/4

if Q > 0

(2.35)

R =

⎧⎪⎪⎨
⎪⎪⎩

(
V0

πH

)1/2

=

(
V 4

0 c0ρm

π4�ρμm

)1/10

if Q = 0(
QT

πH

)1/2

=

(
Qc0

π�ρg

)1/2

if Q > 0

(2.36)

These different scales are defined by equating the non-dimensional groups in front
of the terms of spreading and loss of fluid to 1. We also use πR2H = V0 if Q = 0, or
πR2H = QT if Q > 0. These scales are all functions of the volume or volume flux of
the flow and they almost all involve physical parameters characterizing both phases.
Only H for Q > 0 involves physical properties of the matrix only. In this case, H is
the vertical scale as defined for the single-phase flow (Huppert 1982), suggesting that
the vertical scale is not influenced by the loss of fluid for Q > 0.

The dimensionless governing equations thus become

∂h

∂t
=

1

r

∂

∂r

[
(1 − βφ)h3r

3(1 − φ)

∂h

∂r
− βh4r

8(1 − φ)

∂φ

∂r

]
+

σ

r

∂

∂r

[
(1 − βφ)

β
φ2−nhr

∂h

∂r

− φ2−nh2r

2

∂φ

∂r

]
+

1

γ 2
e−r2/γ 2 − φ2−n

[
(1 − φ) − σ

(1 − βφ)

β

(
∂h

∂r

)2
]

(2.37)

∂φ

∂t
=

∂φ

∂r

[
(1 − βφ)h2

3(1 − φ)

∂h

∂r
− βh3

8(1 − φ)

∂φ

∂r

]
+ σ

(1 − φ)

rh

∂

∂r

[
(1 − βφ)

β
φ2−nhr

∂h

∂r

− φ2−nh2r

2

∂φ

∂r

]
+

(φ0 − φ)

h

1

γ 2
e−r2/γ 2 − (1 − φ)φ2−n

h

×
[
(1 − φ) − σ

(1 − βφ)

β

(
∂h

∂r

)2
]

, (2.38)

where

β =
�ρ

ρm

(2.39)

ν =
δ

H
(2.40)

γ =
a

R
if Q > 0 (2.41)

σ =
H 2

R2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
μm�ρ

c0ρm

)3/5 (
π

V0

)2/5

if Q = 0

�ρg

c0

(
πμm

Qρmg

)1/2

if Q > 0

(2.42)

All the variables in (2.37)–(2.42) hereafter are dimensionless. If the characteristic
separation velocity is larger than the spreading velocity, then σ > 1 and the fluid
flows more rapidly horizontally than the matrix spreads and escapes at the edge of
the current. Once fluid is lost the layer spreads like a single-phase gravity current.



Two-phase viscous gravity currents 309

If the spreading velocity is larger than the separation velocity, then σ < 1, and
the matrix spreads faster than fluid escapes. The current progressively loses its fluid
phase through the upper surface.

For most natural two-phase viscous gravity currents, for example lava flows (see
§ 5), H 2/R2 = σ � 1. As the current spreads, its surface increases, which facilitates
fluid loss. And as fluid is lost, the average density ¯̄ρ of the current increases, which
facilitates the spreading, but the average viscosity of the current (1 − φ)μm also
increases which acts adversely to flow. The effect of a different rheology for the flow
is examined in Appendix D using different functions for the variations of the effective
viscosity with the fraction of fluid.

Since ν is

ν =
(Kμm/c0)

1/2

H
=

(
Kσ

β

)1/2

(2.43)

and K is of the order of 1, β ∼ 1, assuming σ � 1, gives ν2 � 1. And hence the
hydrostatic assumption for the vertical pressure gradient in the current is valid. The
effects of viscous compaction are studied in Appendix B.

In the calculations we develop for constant volume and constant volume flux
two-phase gravity currents, we consider σ � 1 and ν � 1.

2.6. Boundary and initial conditions

If we assume there are no point sources of mass of fluid and matrix, then a �= 0 and
both thickness h and volume fraction of fluid φ are continuous at r = 0. At r = 0,
symmetry requires

∂h

∂r
=

∂φ

∂r
= 0

for (2.37) and (2.38).
At t = 0, for V0 > 0, the initial shape of h is defined such that

2π

∫ ∞

0

hr dr = 1 (2.44)

in which fluid loss has not yet occurred. The initial shape of the current is chosen to
match the shape of a single-phase gravity current (Huppert 1982)

h(r, t = 0) =

⎧⎨
⎩

4

3πr2
0

(
1 − r2

r2
0

)1/3

if r � r0

0 if r > r0

(2.45)

where we choose r0 = 0.1. Different initial shapes have been tested, including
triangular or elliptical shapes. The shape of the current returns to the self-similar
shape described by (2.45) in a dimensionless time of less than 5 × 10−8. Moreover,
the initial shape has no consequence on the fluid loss. The initial volume fraction of
fluid is uniform and equal to φ0 throughout the current for r � r0; it is equal to zero
outside the current for r > r0.

Equations (2.37) and (2.38) are solved numerically using the finite-volume method
of Patankar (1980); details on the numerical methods are given in Appendix C.

3. Constant volume gravity currents
In this section, we show the results of our calculations for the spreading and loss

of fluid of a constant volume gravity current, i.e. Q = 0, using σ � 1 and ν � 1 and
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Figure 1. (a) Thickness and (b) volume fraction of fluid of a two-phase gravity current as a
function of radial direction r at four different times. Parameters are dimensionless. φ0 = 30 %,
Q = 0, β = 0.98, σ � 1, ν � 1

considering permeable as well as suspension flows. Details on the numerical analysis
are given in Appendix C.

3.1. Thickness and fluid fraction profiles

As the gravity current spreads and loses fluid, its shape remains essentially self-
similar (figure 1a) and cannot be differentiated from the shape of a single-phase
gravity current if the current viscosity is proportional to the average matrix fraction,
and goes as μm(1 − φ) (see Appendix D, figure 10). The current also remains similar
for different values of φ0. The shape of the current differs from a single-phase
gravity current if the viscosity dependence on fluid volume fraction is different (see
Appendix D).

The volume fraction of fluid drops predominantly because of buoyant escape
through the surface and not by collapse of the current, and hence, the loss is small
initially, when the surface area is small. Between t = 0.006 and t = 0.9, there
is almost no fluid loss, and the fluid fraction averaged over the current’s volume
remains practically constant. The volume fraction of fluid is initially constant over
r . The fluid fraction at the centre increases slightly at first because, with the large
initial negative gradient in φ at the current’s edge, the mixture weight, and hence the
hydrostatic pressure, increase towards the edge; this effect drives a Darcy flux of fluid
towards the centre (relative to the outwardly spreading matrix; see (2.22)) that causes
fluid to accumulate briefly near the current’s centre.

Fluid loss becomes larger as the current spreads and its surface increases. Indeed,
later on, between t = 0.9 and t = 4.5, the current is more exposed, its surface is larger
and the fluid fraction decreases substantially over the whole radius (figure 1b).

Far from the front, the radial gradient in φ stays very small and almost equal to
zero, at any time.

3.2. Evolution of fluid fraction, thickness and edge radius

Our calculations show that the evolution of fluid fraction over time is identical for a
given value of φ0, and for σ � 1, ν � 1 and 0.1 < β < 1. Apart from the influence
of φ0, slight variations in the evolution of thickness and edge radius are induced by
varying β , which we shall return to later in the paper. A different dependence of the
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Figure 2. Evolution of the average fluid fraction 〈φ〉 in the current as a function of
dimensionless time. Fluid is lost at the surface of the flow. The higher the initial fluid
content, the higher the rate of fluid loss. (a) Darcy flow, for four different initial fluid contents:
φ0 = 0.1, 0.2, 0.3 and 0.4. (b) Suspension flow (solid line), Darcy flow is also indicated in
dashed line, φ0 = 0.3. In both cases results are for σ � 1, ν � 1 and 0.1 < β < 1.

current’s viscosity on fluid volume fraction does not significantly affect fluid loss (see
Appendix D).

The evolution of the average fluid fraction in the current 〈φ〉 with time shows that
the loss of fluid accelerates at t ∼ 1 (figure 2a). The higher the initial fluid content
the higher the rate of fluid loss. When 〈φ〉 attains very small values, close to 0.01,
fluid loss becomes very slow and almost ceases. A surprising result is that the time
scale for almost complete fluid loss is identical regardless of the initial fluid content.
In all cases a value of 〈φ〉 ∼ 0.02 is attained in ∼10T , and a value of 0.01 is attained
in ∼20T , where T is the characteristic time scale given by (2.35), for Q = 0 and
c0 = μf /k0.

Fluid loss is proportional to the separation velocity at the surface (�w(z = h) ∝
(1 − φ) × φ1−n, n = 0, 1) and to the area over which fluid is lost, which is the
dimensionless area of the current S times the volume fraction of fluid φ. Total fluid
loss is thus proportional to S × (1 − φ)φ2−n, which increases with φ between 0 and
0.5. This explains why the higher the initial fluid volume fraction and the larger the
surface of the current, the higher the rate of fluid escape.

In the suspension case the rate of fluid loss depends on φ, rather than φ2 for Darcy
flow, thus fluid loss is more rapid in dimensionless units, but the characteristic time
scales are different in both cases. Fluid loss accelerates for t ∼ 0.1 and it is complete
in t ∼ 2T , where T is the characteristic time scale given by (2.35), for Q = 0 and
c0 = 9μm/2r2

b (figure 2b).
Fluid loss affects the spreading of the current, as apparent on the evolution

of the current’s maximum thickness and edge radius (figures 3a and 3b for
Darcy flow). Results are similar for the suspension case. The curves for different
initial fluid fraction are compared with the case of a single-phase viscous gravity
current, φ0 = 0. For a single-phase gravity current, Huppert (1982) shows that
hd(η, t) = (3V0μm/ρ̄g)t−1/4

d f (η), where hd and td are the dimensional thickness and
time, respectively, η a similarity variable and f (η) is a shape function. Similarly the
edge radius is rd ∝ t

1/8
d .
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Figure 3. Evolution of dimensionless thickness h at r = 0 (a) and edge radius (b) as a
function of dimensionless time for different values of the initial volume fraction of fluid φ0

equal to 0 (solid line, indicated), 0.1 (dashed line), 0.2 (solid line), 0.3 (dash-dotted line) and
0.4 (bold line), considering Darcy flow. The case of a single-phase gravity current corresponds
to φ0 = 0. These results are for σ � 1, ν � 1 and β = 0.98.

The evolutions of the thickness and edge radius of a two-phase gravity current first
parallel the single-phase ones (figure 3). The calculations all start with the same initial
thickness and radius. When t > 0.5, fluid loss is significant. The effect of the fluid-
loss event is apparent on the radius and thickness evolutions, both of which deviate
significantly from the single-phase evolution. The higher the initial fluid fraction,
the faster the decrease in thickness and the slower the increase in edge radius. This
behaviour reflects the loss of fluid and overall loss of volume. Fluid loss becomes
significant as the maximum thickness h(r = 0) → 1. It occurs for h(r = 0) varying
between about 1 and 0.4, i.e. h close to 1, which verifies our assumption of δ/h < 0.1
during fluid loss.

When dimensionless t becomes larger than 10–20, fluid loss is almost complete
and has no more effect on the spreading of the current (figure 3). Indeed, after this
time, the curves parallel the single-phase thickness and edge radius evolutions, with
h ∝ t−1/4 and r ∝ t−1/8.

3.3. Scaling analysis for maximum thickness and fluid fraction

Far from the edge of the current, φ varies only slightly with r (figure 1b). We propose
here a simple scaling analysis of (2.37) and (2.38), for behaviour close to the current’s
centre, which thus neglects the variation of φ with r , and uses ∂h/∂r ≈ −hs/rs , where
subscript s indicates scale, and σ � 1. At the edge, the radial gradient in h and φ are
large, thus this scaling analysis is not valid there. In this simple model, only two terms
remain: the spreading term due to gradients in thickness and the term representing
fluid loss

dhs

dt
= − π

3Vm

(1 − βφs)h
5
s − (1 − φs)φ

2−n
s (3.1)

dφs

dt
= − (1 − φs)

2φ2−n
s

hs

(3.2)
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Figure 4. Comparison between the numerical calculations and the results given by the simple
scaling analysis (3.1) and (3.2) with β = 0.98 and considering Darcy flow. (a) Volume fraction
of fluid as a function of time for φ0 = 0.4. Bold line: average fluid fraction calculated from
the numerical model; solid line: fluid fraction at the centre of the current calculated from
the numerical model; crosses: fluid fraction calculated from scaling analysis. (b) Thickness
evolution for φ0 = 0 and φ0 = 0.4. Solid lines: thickness calculated from the numerical model;
crosses: thickness calculated from scaling analysis. On both graphs, the dashed line indicates
the case of β = 0.5, φ0 = 0.4, for comparison.

where we have eliminated rs using Vm = (1 − φs)πhsr
2
s , which is the volume of the

matrix. The results of this analysis match our more complex calculations, especially
for quantities at r = 0 (figures 4a and 4b). Thus, for constant volume, the variation
of φ over r can be neglected to first order when calculating the average fluid loss and
the evolution of the peak thickness.

3.4. Note on the effect of density and viscosity variations

The dimensionless number β = �ρ/ρm does not strongly influence fluid loss but
influences the terms of spreading in both the evolution of h and φ (see (2.37) and
(2.38)). As variations of φ with r are negligible far from the edge for constant volume
flows, the terms representing spreading due to gradients in fluid volume fraction are
negligible in (2.37) and (2.38).

For β close to one, the reduction in spreading rate due to a decrease in density
as φ increases is counterbalanced by a decrease in viscosity through the factor
(1 − βφ)/(1 − φ) in front of the gradient in thickness in (2.37) and (2.38). For smaller
values of β , the effect of viscosity should dominate the spreading behaviour.

Changing β from 0.98 to 0.5, for which the effect of viscosity dominates over
density variations, has no effect on fluid loss but changes slightly the evolution in
peak thickness with time (figure 4). In the case of β = 0.5, the mixture density
(¯̄ρ = ρm − φ�ρ) is larger and spreading is faster. The curve is slightly lower than
the curve for β = 0.98, but this difference diminishes as φ decreases and eventually
goes to 0 at the end. The effect of different viscosity dependence on φ on the
spreading of a two-phase gravity currents is examined in Appendix D through the
function μm(1 − φ)b, with −1 � b � 2. This effect induces very similar changes in
the maximum thickness evolution as do variation in β: if the viscosity decreases with
φ and b > 1, the flow spreads more easily, as observed if β = 0.5, and the peak
thickness is smaller at a given time and fluid fraction. If the viscosity increases with
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φ (b < 0), the flow spreads less rapidly and the peak thickness is larger at a given
time and fluid fraction; the effect of fluid loss on thickness evolution is even more
apparent in that case.

3.5. Dimensional scaling laws

3.5.1. Thickness and radius scales

The thickness scale for constant volume currents (Q = 0), given by (2.34), represents
the critical thickness for fluid loss to be significant. In (2.38), when h � 1, the term
representing fluid loss is negligible. The thickness evolution deviates from the single-
phase case for h < 1 as shown in figures 3(a) and 4(b).

This critical thickness increases with matrix viscosity and current’s volume, and
decreases with the drag coefficient. The higher the volume and the higher the viscosity,
the longer the current remains relatively thick and has time to lose its fluid. A high
drag coefficient impedes fluid escape.

Fluid loss is complete when R ∼ 1 (figure 3b). Thus, the scale R given by (2.36)
for Q = 0 gives the radius over which fluid loss occurs, which depends mostly on the
volume of the current.

3.5.2. Time scale for complete fluid loss

Our analysis suggests the rather important result that the time scale for almost
complete fluid loss in a constant volume gravity current does not depend on the
initial fluid content (figures 2a, b and 4a). This time scale is ∼10T in the case of
Darcy flow, and ∼2T in the case of suspension flow, with T the time scale given by
(2.35), with Q = 0 and c0 = μf /k0 for Darcy flow and c0 = 9μm/2r2

b for suspensions.
T depends strongly on c0, and varies only slowly with the volume of the flow and the
matrix viscosity.

4. Constant flux gravity currents
In this section, we study flows with a persistent mass source and consider constant

volume flux two-phase gravity currents, i.e. Q > 0.

4.1. Thickness and fluid fraction profiles

The thickness profile and its evolution for the constant flux case is very different from
the constant volume case (figure 5a). Current’s thickness always increases with time
for any given r which leads to a completely different profile for the fluid fraction in
the current. In contrast to the constant volume case, we show that the fluid fraction
reaches a steady state at the centre, and a significant radial gradient in the fluid
fraction develops with time as the current spreads and edge radius increases (fig-
ure 5b).

Moreover, in the previous constant volume case, fluid loss is accelerated by the
decrease in thickness with time. In the constant flux case, however, as the current
spreads and material is injected into it, the thickness at r = 0 increases very slightly
with time, which inhibits loss of fluid at the centre.

4.2. Steady-state value of φ at the centre

In the centre of the current, boundary conditions are such that ∂φ/∂r = 0. In this
case, at r = 0 (2.38) reduces to

dφ

dt
= − (1 − φ)2φ2−n

h
+

1

γ 2

(φ0 − φ)

h
. (4.1)
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Figure 5. (a) Thickness h and (b) volume fraction of fluid φ of a two-phase viscous gravity
current as a function of radius r at three different times, for the constant-flux case (Q > 0)
and considering Darcy flow. Quantities shown are dimensionless. φ0 = 0.3, β = 0.98, γ = 0.5,
V0 = 1.
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Figure 6. Steady-state value of the volume fraction of fluid at the centre of the flow (r = 0),
considering Darcy flow, as a function of γ = a/R, and for different values of φ0 indicated
on the graphs. Circles: Steady-state value of φ(r = 0) given by our numerical calculations for
different values of φ0 and γ .

At r = 0, φ attains a steady-state value φss , when fluid loss is balanced by fluid
injection. The steady-state value φss is the solution to (4.1) for dφ/dt = 0, in which
case φss is independent of h and depends only on the initial fluid fraction φ0 and on
γ = a/R. The value of φss decreases when γ increases, because the source is broader
and distributes fluid loss over larger r (figure 6). According to this simple analysis,
φss is significantly less than the initial fraction of fluid φ0 for γ > 1, i.e. a > R. This
is generally not relevant for geological flows, for instance volcanic conduits are much
smaller than the characteristic radius R of a lava flow (γ < 1).
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Figure 7. (a) Thickness and (b) volume fraction of fluid as a function of radial direction r
normalized by edge radius, at t = 50, for different values of γ indicated on the graph, for the
constant flux case (Q > 0) and considering Darcy flow. Parameters are dimensionless. φ0 = 0.3,
β = 0.98, σ � 1, ν � 1, V0 = 1.

Steady-state values of φ at r = 0 derived from our numerical calculations for Darcy
flow and for different values of φ0 and γ , match the theoretical results given by (4.1)
for dφ/dt = 0 (figure 6).

In numerical calculations, steady-state values of φ are reached when the
dimensionless edge radius of the current attains about three times the value of
the dimensionless radius of the source γ . After this initial period, γ has only little
influence on the results.

4.3. Effect of γ

As demonstrated by the scaling analysis, decreasing the size of the source γ causes
the centre of the current to become thicker and to retain a larger steady-state fluid
fraction (figure 7a, b). As the typical radius of the source γ decreases, both the
thickness and fluid fraction develop higher gradients far from the front. However, the
average fluid fractions in the current are very similar for different values of γ (for
a given time t and initial fluid fraction φ0), and hence the size of the source has a
negligible influence on fluid loss.

4.4. Fluid fraction evolution

Because φ reaches a steady state at the current centre, the fluid fraction profile as a
function of radius remains identical through time near r = 0 (figure 5b). The fraction
of fluid stays significant in the range 0 � r � 6 and becomes negligible once the edge
radius exceeds r = 10. Significant fluid loss occurs then between r = 0 and r ∼ 8 for
Darcy flow. The dimensional radial scale over which fluid loss occurs is approximately
8R for Darcy flow; it is equal to 2R for a suspension flow. Once the radius of the
flow exceeds this radial scale, the fluid fraction profile remains similar.

The evolution of the average fluid fraction 〈φ〉 depends only on the initial volume
fraction of fluid φ0, as in the case of the constant volume flow. As in the constant
volume case, fluid loss becomes significant for t > 1 for Darcy flow (figure 8a), at
which time r ∼ 1, and the higher the initial fluid fraction, the higher the rate of fluid
loss.
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Figure 8. Average fraction of fluid in the current 〈φ〉 as a function of dimensionless time, in
the case of constant flux flows (Q > 0), using V0 = 1, β = 0.98, σ � 1, ν � 1. (a) Evolution
for different values of φ0 = 0.3, 0.2 and 0.1, and considering Darcy flow. (b) Evolution for
φ0 = 0.2 considering a suspension flow (thick solid line), and Darcy flow (thick dashed line).
Note the scale change from linear (a) to logarithmic (b) in the vertical axis. The dash-dotted
line indicates the limiting case of no fluid loss, i.e. constant fluid fraction with time. Thin lines
correspond to the difference in fluid fraction between a two-phase compacting gravity–current
and a theoretical ‘steady-state’ case. In the limiting steady-state case, the initial volume is
V0 = 1 with φ0 = 0.2 and all the fluid subsequently injected is lost at the surface. Thin line:
difference between suspension flow and steady-state case; thin dashed line: difference between
Darcy flow (dashed line) and steady-state case.

The volume-averaged fluid fraction 〈φ〉 decreases with time, as the total volume
increases and fluid is lost at the surface (figure 8a). For Darcy flow, fluid loss becomes
significant at t > 1, r > 1, and at t = 200 the volume fraction of fluid reaches 10 % of
the initial fraction of fluid φ0, for any value of φ0. However, fluid loss still continues
after this time because of new injection, but the volume of fluid remaining in the
current becomes negligible in comparison to the total volume.

One can compare the evolution of the average fluid fraction with two limiting
cases. In the first limit, there is no loss of fluid, and the amount of fluid remains
constant in the current. In the second limit, corresponding to a steady state, the
current starts with a volume V0 = 1 containing a fraction of fluid φ0 = 0.2, and all the
subsequent fluid injected is lost at the surface, which leads to 〈φ〉 = φ0V0/(V0 + Qt).
The difference in fluid fraction between the calculated gravity currents and this
hypothetical steady-state case initially increases, because the flow retains fluid (fig-
ure 8b) and then decreases when the flow approaches steady-state fluid loss (figure
8b). We define the characteristic time for fluid loss to reach steady state as the time
for this difference to reach 10 % of the initial fluid fraction (i.e. 0.02 in the case of
figure 8b).

For Darcy flow, it takes ∼200T to reach a steady-state evolution at which time the
current’s radius is 12.7R, with T and R the characteristic time scale and radius scale,
respectively, given by (2.35) and (2.36), with Q > 0 and c0 = μf /k0. For a suspension
flow, it takes 10T to reach steady-state conditions, at which time the current’s radius
is 2.9R, with T and R, respectively, given by (2.35) and (2.36), with Q > 0 and
c0 = 9μm/2r2

b . This compares favourably with the ‘fluid loss radii’ of ∼8R and ∼2R

discussed above.



318 C. Michaut and D. Bercovici

5. Application to the spreading and degassing of lava flows
Here we apply the results of our modelling to study the coupling between the

spreading and degassing of a lava flow. The validity of the assumptions used in the
model are first verified for the case of lava flows; and we infer a range of values for
model parameters and dimensionless numbers.

5.1. Assumptions and parameters

5.1.1. Viscosity and density

The application to lava flows requires μf � μm and ρf < ρm, where the fluid
phase is the gas. Gas viscosity μf is about 10−5 Pa s for H2O and CO2 gas. Lava
viscosity depends on its composition, silica and water content in particular; it can
vary between 10 Pa s for mafic lavas and more than 108 Pa s for felsic lavas. The
effective viscosity based on simple mixture theory goes as μm(1 − φ). However, the
behaviour of lava flows may be more complex (Llewellin, Mader & Wilson 2002),
but different dependences of the viscosity on gas volume fraction have little effect on
the degassing process and only affect the shape of the flow (see Appendix D).

Lava density ρm depends mainly on its composition and varies between ∼2300
kgm−3, for felsic lavas, and ∼3000 kg m−3, for mafic lavas.

Gas density ρf is 0.59 and 1.98 kg m−3 for water vapour and carbon dioxide,
respectively, at 1 atm and 373 K. Gases are compressible and their densities vary with
temperature and pressure. However, in lava flows, temperature variations are limited
to flow margins; the effect of pressure may be more important. Following the ideal
gas law, one can estimate that gas density increases from ∼0.59 kg m−3 at the top to
∼38 kg m−3 at the bottom of a 100 m thick magma column, i.e. �ρ/ρm varies between
0.9998 and 0.9848, using ρm = 2500 kg m−3. Therefore this variation can be neglected
and β = �ρ/ρm can be considered constant, between 0.98 and 1 as calculated above.

5.1.2. Values of σ = H 2/R2

In the case of very fluid lavas, such as basalts, or when the porosity becomes very
low, the gas phase forms isolated bubbles which are treated as suspensions. In that
case c0 = 9μm/2r2

b (Appendix A). For bubble radii rb between 0.1 and 10 mm, and
lava viscosities between 10 and 104 Pa s, the range of values for c0 is 4.5 × 105 to
4.5 × 1012 Pa s m−2. In that case we always have σ � 1, even for large bubble radius
and small volume or volume flux lava flows (see (2.42)).

In the case of large viscosity lavas, such as andesites, dacites or rhyolites, which
contain microcrystals and a high proportion of gas, the gas may form a complex
and interconnected network. The interaction force follows Darcy’s law and the drag
coefficient is such that c = μf /k0 is a constant, n = 0 in (2.29) and (2.30) (see
Appendix A). For porosity between 30 % and 60 %, permeability varies over several
orders of magnitude, with values between 10−16 and 10−12 m2 for felsic samples
(Eichelberger et al. 1986; Klug & Cashman 1996). Using k(ϕ) = k0ϕ

2, k0 is between
10−12 and 10−15 m2, which gives a range of values for c0 between 107 and 1010 Pa s m−2.
Emplacement of lava domes are eruptions characterized by large viscosities and small
flux or volumes, of the order of 1 m3 s−1 and 108 m3, respectively, for the well-known
examples of the Mount St Helens and the Soufrière Hills (Montserrat) domes (Sparks
et al. 1998), and hence largest values of σ (see (2.42)). Using V0 � 106 m3 and Q =
1 m3 s−1 and a large value of μm = 108 Pa s, we find that σ is less than 0.025 and 0.3
in the constant volume and constant flux case, respectively.
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To summarize, in the vast majority of cases: σ � 1, and thus ν � 1, and the terms
involving horizontal phase separation and compaction are negligible in (2.37) and
(2.38), as considered in our calculations (§§ 3 and 4).

5.2. Two volcanic examples

5.2.1. Degassing of a felsic lava dome

In felsic volcanic systems, the gas phase may form an interconnected network,
in which case we use c0 = μf /k0 = 109 Pa s m−2 and n = 0, μm = 108 Pa s, ρm =
2500 kgm−3, β = 0.98 and g = 9.81 m s−2. We consider an average flux of Q =
1 m3 s−1, a typical value for effusion rates measured on various domes (Sparks et al.
1998; Nakada & Motomura 1999). According to our calculations, significant degassing
occurs over a radius of ∼8R, i.e. over ∼900 m. The flow retains gas and returns to a
steady state where all the injected gas is lost by degassing, in ∼200T = 1.6 year, with
T given by (2.35) for Q > 0. This time period is comparable to the typical duration of
dome growth. Domes contain a significant fraction of gas; for instance, measurements
in an obsidian dome of the Inyo Domes chain, California, show porosities between
15 % and 30 % (Eichelberger et al. 1986). Degassing is thus likely to influence the
spreading of the dome and, for a given effusion rate, to decrease the advance rate of the
flow front and the average growth rate in comparison to a single-phase lava flow (fig-
ure 3a, b). Thus degassing might in part account for the slow decrease in the growth
rate and the advance rate of the flow front noted by Huppert et al. (1982) at La
Soufrière Saint Vincent, which was attributed to the growth of a rubble collar at the
front. This decrease in both rates happened after 70 days of dome growth, at an
average growth rate of 6 m3 s−1, at which time the thickness and radius, respectively,
reached ∼120 and ∼400 m. In our results, degassing becomes significant when the
dimensionless time and radius are both ∼1. For relevant values of the viscosity and
of the reference permeability of 3 × 1011 Pa s and 5×10−15 m2, such that degassing
starts at t ∼ T = 70 days, the radius is R ∼ 400 m and the thickness at the centre
for a conduit radius a ∼ 20 m is 2H ∼ 140 m, close to the values measured at the
Soufrière Saint Vincent after an equivalent time interval.

5.2.2. Flood basalt lava flows

In analogy to active inflated pahoehoe flows observed in Hawaii, Self, Keszthelyi &
Thordarson (1998) suggested that flood basalts may be emplaced as large inflated flow
fields, involving the raising of the upper crust of a lava flow as fresh lava is injected
into the molten core of the flow. Our degassing model may not be significantly affected
by a mechanism of inflation, as long as the crust is weak and deformable. A weak
crust acts only as an insulator, supporting our assumption of an isothermal flow, and
does not mechanically influence the spreading of the lava. Degassing would be slowed
down only if the crust has a lower permeability than the lava. But, while the crust is
inflated by a lava flow, it is deformed and fractured and hence permeable. However,
if the crust is thick and hardly deformable, it influences the dynamics of the flow,
which is then similar to the spreading of a laccolith in an elastic media (Johnson &
Pollard 1973). The elastic response of the crust will accelerate the spreading of the
flow by squeezing the lava outwards, and our model then provides a lower limit for
the radial extent of the degassing.

We thus use the results of our model to estimate the extent of degassing of
flood basalt flows. In basaltic flows, gas bubbles form a suspension; the reference
drag coefficient is defined by c0 = 9μm/2r2

b and takes values between 5 × 109 and
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5 × 1011 Pa s m−2, for lava viscosity between ∼102 and 103Pa s, and gas bubble radii
between 0.1 and 1 mm. We use ρm = 2800 kg m−3, g = 9.81 m s−1 and β = 0.98.

Self et al. (2006) estimated volumes and effusion rates for Columbia River flood
basalt flows of ∼1000 km3 and ∼4000 m3 s−1, respectively.

For those typical volumes and effusion rates, we calculate that degassing of a flood
basalt flow occurs over a radius equal to R = 200–400 km, for a typical volume of
1000 km3, with R given by (2.36) for Q = 0, or over a radius equal to 2R = 30–300
km for a volume flux equal to 4000 m3 s−1, with R given by (2.36), depending on the
drag coefficient. Thus, results from constant flux and volume are consistent with each
other and indicate that the surface area over which significant degassing occurs could
reach more than 105 km2.

This result shows that gas is retained within the lava and transported over large
distances. Although we do not consider cooling in our model, one can reasonably
assume that gas released near the vent will be at a higher temperature than gas
released far from the vent. Initial explosive eruptions of volatile-rich basalts release
hot gas at the vent that may reach the stratosphere (Thordarson & Self 1993). In
contrast, subsequent effusive eruptions distribute cooler gas over a large area, which
may affect vertical gas transport. For example, according to our model, the radius
over which gas is released reaches a few hundreds of kilometres and can approach
the Rossby radius of deformation Rrd =

√
gH ′�T/T0/(2Ω sinα) (Gill 1982), where

α is the latitude, H ′ is the characteristic height of the flow of gas in the atmosphere,
g = 9.81 m s−2 is the acceleration of gravity and Ω = 7.2 × 10−5 rad s−1 is the Earth’s
angular velocity. H ′ is approximately 100 m and for �T/T0 ≈ 200/300, we find that
at latitudes larger than or equal to ∼35◦, the Rossby radius of deformation is less
than 300 km and gas released into the atmosphere by flood basalt lava flows may
become sensitive to the Earth’s rotation and undergo cyclonic activity.

5.2.3. Effect of cooling and phase changes

Gas exsolution may generate secondary populations of gas bubbles, which in turn
would affect the spreading of the flow. As the flow thins, exsolution takes place, in
particular at the base of the flow, where the pressure decreases significantly. This
would lead to a change in viscosity and volume of the mixture through the change in
gas volume fraction, which would in part compensate for gas loss. But, it would also
lead to a significant increase in the melt (matrix) viscosity, as the melt becomes drier.
This effect could be significant in the case of thick felsic lava domes, as they contain
a significant fraction of dissolved volatiles that largely affect their viscosity. Although
the present model does not include gas exsolution it can be readily added.

Cooling and solidification of the lava, which are not taken into account in this
theory, might also influence the spreading and degassing of the flow and necessitate
a more complex theory. However, some conclusions can be derived by comparing the
time scales for degassing to the time scale for cooling and solidification of a particular
lava flow. Time scale for cooling by radiation and emplacement of single-lobed basaltic
flows are, for instance, given by Crisp & Baloga (1990).

Time scales for the solidification of a lava flow surface are also given by Fink &
Griffiths (1990) and Griffiths & Fink (1992) and are between a few tens to a few
hundreds of seconds and are thus much smaller than the time scale for degassing as
estimated by our study. As discussed in the previous section, however, the presence of
a crust does not necessarily influence the rise of the gas phase within the flow, since
the passage of gas through the crust is achieved rapidly through fractures.
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6. Conclusion
We have developed a theory for the evolution of the thickness and fluid fraction

of a two-phase viscous gravity current composed of a viscous matrix and much less
viscous fluid. Loss of fluid is accounted for by flux through the upper boundary. The
resulting theory is valid both for the case of a suspension of fluid particles within the
matrix, and for the case of Darcy flow through a permeable matrix; in the latter case
the compaction length is assumed less than the thickness of the flow. Scaling analysis
shows that the horizontal separation of phases may be neglected in most natural
settings. Numerical analysis of the governing equations, for both constant volume
and constant volume–flux flows, shows that rate of fluid loss is only a function of the
initial fluid fraction, but occurs in a finite radius and within a finite time scale. The
fluid-loss radius and time scale, however, are independent of initial fluid fraction, but
are functions of the physical properties of the two phases, as well as the volume or
flux of the flow. Fluid loss affects the rate of spreading of the current (i.e. evolution
of the thickness and radius as a function of time) relative to a single-phase gravity
current. Moreover, the effective mixture viscosity’s dependence on fluid fraction can
change the current’s shape. The application to lava flow shows that volcanic gas
(acting as the fluid phase) is retained over a large extent. Degassing can therefore
change the rate of spreading of a dome. In the case of flood basalt lava flows, the
distances over which degassing occurs might reach length scales at which the ascent
of gas in the atmosphere becomes sensitive to the Coriolis effect, thereby causing
cyclonic activity and affecting atmosphere dynamics.

We thank Yanick Ricard, Ross Griffiths and three anonymous reviewers for their
helpful comments on the manuscript. This work was supported by NSF grant EAR
0537599.

Appendix A. Drag coefficient for suspensions and Darcy flow
The drag coefficient c controls the viscous interaction between phases and is one

of the critical parameters of our model since it plays an important role in the
characteristic values of thickness H and time scale T .

If the fluid forms an interconnected network, the interaction force follows Darcy’s
law and the drag coefficient depends on the fluid viscosity and on the size of
matrix pores which controls its permeability (McKenzie 1984). Bercovici et al. (2001a)
show that, for μf � μm, c = μf ϕ2/k(ϕ), where k(ϕ) is the permeability which
depends on the porosity or fluid fraction ϕ. For small porosities, one often uses the
simple model k(ϕ) = k0ϕ

n (e.g. see Spiegelman 1993 c). We use n = 2, which gives
c = μf /k0 = c0 constant (i.e. c = c0ϕ

n, n = 0), representative of tubules for fluid
transport.

The fluid phase may also form isolated particles or bubbles, which can be treated
as a suspension; this is the case for gas bubbles in basaltic lavas (Manga 1996). The
interaction force between phases follows Stoke’s law. For one particle of radius rb

and density ρf in matrix, the velocity difference between the particle and matrix is
given by

0 =
4π

3
r3
b (ρf − ρm)gz − 6πμmrb�v (A 1)

which is appropriate for stokeslet with free slip surfaces. For N particles in a volume
δVT , with ϕ = N4πr3

b /3δVT and accounting for Archimedean compensation of the
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other bubbles, we have

0 = N
4π

3
r3
b (ρf − (1 − ϕ)ρm − ϕρf )gz − 6Nπμmrb�v (A 2)

which gives

0 = −ϕ(1 − ϕ)�ρgz − ϕ
9μm

2r2
b

�v (A 3)

By analogy with the action–reaction equation (2.7), with �P = 0, τ = 0 and ∇φ = 0,
we obtain

c = ϕ
9μm

2r2
b

. (A 4)

If we consider that particle radius remains constant when ϕ varies and only the
number of particles N varies, then c = c0ϕ

n with n = 1 and c0 = 9μm/2r2
b .

Appendix B. Effects of viscous compaction
Here we examine the effects of viscous compaction and a finite pressure difference

between phases �P on fluid loss, which occur primarily through the vertical rate of
phase separation at the surface, �w(z = h). We verify in particular that �P is indeed
negligible and that viscous compaction has little or no effects on fluid loss for σ � 1,
as is relevant for most geologic flows (e.g. lavas). We start from (2.12), with θ � ϕ,
i.e. ϕ ∼ φ. The exact solution of this equation is

∂Pf

∂z
= A1e

r1z + A2e
r2z −

(
¯̄ρg + 2

θ2

h2
δ2ρf g

) (
1 + 2

θ2

h2
δ2

)−1

, (B 1)

where A1 and A2 are two constants of integration, and r1 and r2 are given by

r1,2 =
θ

h

[
−(3 − 4φ) ±

(
(3 − 4φ)2 + 4φ(1 − φ)

(
h2

θ2δ2
+ 2

))1/2
]

(2φ(1 − φ))−1.

(B 2)

Thus �w and �P are determined by using (B 1) in (2.4) and (2.11), respectively. A1

and A2 are determined by the following boundary conditions. At z = 0, the boundary
is rigid and impermeable and there is no relative vertical motion between fluid and
matrix, �w = 0. Note that we also consider a flux of mixture feeding the current at a
given constant volume rate Q through the lower boundary, but in that case also, both
phases are injected at the same velocity and �w = 0. At z = h, we consider �P = 0,
since Pf = Pm = Pa when μmW/H is negligible relative to Pm (see discussion in § 2.2.2
about the stress tensor components). This is consistent with the fact that �P should
decrease with height because the difference in mass between columns of matrix and
fluid decreases.

We have therefore

�P =
(1 − φ)δ2/h

1 + 2δ2θ2/h2
�ρg × [2θ − B1(2θ + r1hφ)er1z − B2(2θ + r2hφ)er2z] (B 3)

�w = −�ρg

c0

(1 − φ)φ

1 + 2δ2θ2/h2
× [(1 − φ) − B1e

r1z − B2e
r2z] , (B 4)
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Figure 9. (a) Two profiles for the value of �P as a function of z given by (B 3) for two
different values of h = 5 and 1 m. Values of the other parameters are given on the graph. (b)
Evolution of the average fluid fraction 〈φ〉 as a function of time, for φ0 = 0.2 and for two
different cases: ν � 1 and ν = 0.5, �w is given by (B 4). The results of the full calculations
for the case ν � 1 are also shown for comparison.

where B1 and B2 are both positive

B2 = (2θ − (2θ + r1hφ)er1h) × ((2θ + r2hφ)er2h − (2θ + r1hφ)er1h)−1 (B 5)

B1 = 1 − B2. (B 6)

We take the example of a lava flow and parameters are chosen such that
the compaction length is not too small: μm = 106 Pa s, c0 = 108 Pa s m−2,
δ = (Kμm/c0)

1/2 = 0.1 m. For such a high viscosity, the characteristic thickness
H of the flow, given by (2.34) for Q = 0 is of 1.25 m for a 1000 m3 lava
flows and of several metres for more relevant higher volumes. It is thus much
larger than the compaction length, which supports our assumption that δ2 � H 2,
i.e. ν2 � 1.

We choose the thickness h such that it is close to the characteristic thickness H

and we calculate that �P at z = 0 is equal to 1085 Pa, for h = 5 m and 1109 Pa for
h = 1 m. These values for �P are negligible in comparison with ¯̄ρgh equal to 2.2×104

and 1.1 × 105 Pa for φ = 0.2 and h = 1 and 5 m, respectively. With increasing z, the
pressure difference drops within roughly one compaction length to a value of 8.6 Pa,
for h = 5 m , and 43.2 Pa, for h = 1 m, and stays constant over most of the flow
height (figure 9a).

For comparison, �P estimated from (2.19) is 7.6 Pa for h = 5 m and 37.8 Pa for
h = 1 m, which is close to the values calculated with (B 3) over the major height of
the flow. �P increases when the ratio δ/h decreases but is negligible for δ/h � 0.1.

When δ/h � 0.1 then r1 and r2 reduce to much simpler forms

r1 ∼ − 1

d
(B 7)

r2 ∼ +
1

d
(B 8)
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with d = δ((1 − ϕ)ϕ)1/2. We have then

B2 ∼ 2θ − e−h/d(2θ − φh/d)

eh/d(2θ + φh/d)
(B 9)

B1 = 1 − B2 � 1 (B 10)

At z = h, we have, for d small relative to h

�w(h) = −�ρg

c0

φ(1 − φ) ×
[

−1 + e−h/d − 2θ − e−h/d(2θ − φh/d)

2θ + φh/d

]
(B 11)

⇒ �w(h) � −�ρg

c0

φ(1 − φ) (B 12)

which validates our assumptions and confirms (2.28). At z = h, well above the
compactive boundary layer at the bottom of the flow, the difference in velocity ceases
to be a function of z.

Equation (B 4) shows however, that, for larger δ/h, as B1 and B2 are positive,
compaction would reduce the difference in velocity at the surface of the flow, and
thus reduce the rate of fluid loss. For larger δ/h, matrix resistance to deformation
would be the limiting process for fluid loss.

Using the simple scaling analysis of § 3.3 for constant volume flows, we calculate
the effect of matrix resistance to compaction on fluid loss for ν = δ/H = 0.5. In that
case we can still consider ν2 and σ small and �P is still negligible relative to Pf .
Compaction affects only the terms involving �w, i.e. fluid loss at the surface, in (2.29)
and (2.30). We use (B 4) for the expression for �w and θ = φ/2 to calculate the rate
of fluid loss in (3.1) and (3.2).

Matrix resistance to compaction plays a role when ν is no longer negligible (fig-
ure 9b). When ν is closer to unity, resistance to compaction limits the loss of fluid
and causes a decrease in the rate of fluid loss as predicted earlier.

Appendix C. Numerical resolution
The governing equations for the two-phase gravity current (2.37) and (2.38) are

solved numerically with finite volumes (Patankar 1980). The last grid point included
in the calculations occurs at grid point i = imax , which varies as the current spreads
and the edge increases. This edge point is calculated for each iteration such that
hi=imax

> 0 and hi>imax
= 0, so that both h and φ are defined on all the grid points

used in the calculations. This method leads to the inversion of a tridiagonal matrix
for both hn+1

i and φn+1
i , at time step n + 1. The inversion is realized from i = imax to

i = 1. At r = 0, ∂h/∂r = 0 and ∂φ/∂r = 0, which gives hi=1 = hi=2 and φi=1 = φi=2.
The advective terms proportional to ∂φ/∂r in (2.38) need careful treatment. A

centred-difference scheme, consistent with the finite-volume method, is unstable; we
replace it with an upwind difference scheme and write it as (∂φ/∂r)i = 0.8(φi+1 −
φi−1)/2�r + 0.2(φi − φi−1)/�r , but still use (∂h/∂r)i = (hi+1 − hi−1)/2�r . To mitigate
the instability coming from the relaxation of the initially imposed fluid fraction profile,
the term φi(t) used to calculate the time derivative (∂φ/∂t)i = (φi(t +�t)−φi(t))/�t is
averaged over three grid points: φi(t) = aφi−1(t) + (1 − 2a)φi(t) + aφi+1(t). We use the
smallest possible value for a: a = 5 × 10−4, which gives the same results as a = 10−3.

Equations (2.37) and (2.38) have typical advection and diffusion terms. We use CFL
conditions to determine the value of the optimal time step (Courant, Friedrichs &
Lewy 1967).
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Appendix D. Variations in viscosity with fluid volume fraction
Here, we examine the effect of different viscosity variations with fluid fraction.

To be consistent with the simple two-phase mixture theory, we assume in the main
text that the current viscosity varies as μm(1 − φ). But this linear viscosity variation
with fluid fraction is not always realistic. Viscosity of a mixture may be nonlinearly
dependent on φ and may even increase with the fluid fraction; this may be the
case for flows with suspended gas bubbles, depending on the effective bubble rigidity
(Llewellin et al. 2002). If the bubbles deform easily and the surface tension is low,
then viscosity decreases as φ increases.

In order to examine the effect of more complex rheologies, we have used the
following effective viscosity for the flow: μeff = μm(1 − φ)b, which allows a direct
comparison with the general two-phase theory for b = 1. For b > 0, viscosity decreases
with increasing fluid fraction. In the case where b < 0, the viscosity increases with
the fluid fraction, which is relevant for a ‘rigid’ suspension of gas bubbles. Using the
new function for the mixture viscosity, the equations for the evolution of thickness
and fluid fraction become
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The shape of a two-phase gravity current differs for different values of the exponent
b (figure 10a), although the radial profile of the fluid fraction does not change. For
b = 1 the shape is similar to a single-phase gravity current. For b > 1, the viscosity
decreases even more with fluid fraction, and the current spreads more readily for a
higher fraction of fluid, thus the current is flatter at the centre, where φ is higher
and it spreads more easily with less pressure gradient. The fluid fraction decreases
significantly closer to the front and the viscosity increases rapidly, leading to a more
abrupt front similar to the behaviour of cooling gravity currents (Stasiuk et al. 1993;
Bercovici & Lin 1996). For b < 0, the viscosity increases away from the front, which
leads to a less abrupt front, and a more gradual slope to the current.

As b increases, the viscosity decreases for a given fluid fraction, thus the current
surface area increases with b at a given time and φ0. This should facilitate fluid
loss, but, in fact, this effect is negligible and leads to a difference of less than 0.5 %
in fluid fraction at a given time for an increase of b from 1 to 2. Fluid loss as a
function of time cannot be differentiated from that shown in figure 2. The effect is
more significant on the evolution of thickness and edge radius, although the general



326 C. Michaut and D. Bercovici

1.0
(a) (b)

0.8

0.9

b = –1 b = –1

b = 2

b = 2

0.6

0.7

N
o
rm

al
is

ed
 t

h
ic

k
n
es

s 
h/

h 0

Normalized radius r/redge

0.4

0.5

0.2

0.3

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Non-dimensional time

0

N
o
n
-d

im
en

si
o
n
al

 t
h
ic

k
n
es

s 
r 

=
 0

1.0

2.0

0.5

10–2 10–1 100 101 102

Figure 10. (a) Comparison of the shape of two-phase viscous gravity currents as the current
loses its fluid phase, for different values of the exponent b, for Darcy flow. Also indicated on
the graph in dashed line is the self-similar shape of a single-phase gravity current. For b = 1,
the shape is very similar to a single-phase gravity current. (b) Evolution of the thickness as a
function of dimensionless time, for different values of the exponent b, for Darcy flow. Effective
viscosity varies with the fluid fraction as μm(1 − φ)b. Bold line: b = 1, viscosity decreases
linearly with fluid fraction; dash-dotted line: b = 2, viscosity decreases even more with fluid
fraction; solid line: b = −1, viscosity increases with fluid fraction.

behaviour does not change. As b decreases, the viscosity is higher for a given fluid
fraction, the current spreads less easily and remains thick for longer times (figure 10b).
The effect of fluid loss on the current’s thickness evolution becomes more evident as
b decreases. As φ goes to 0, the thickness (and edge radius) evolution returns to the
single-phase evolution.

Appendix E. Effect of finite vertical variations of ϕ

Here we study the effect of large variation of ϕ over height z. We consider that
ν � 1 and σ � 1, i.e. the terms coming from compaction and horizontal separation of
fluid and matrix are negligible, and we consider Darcy flow such that c = c0 = μf /k0

and n = 0. Variations of ϕ are assumed linear over z, i.e. ϕ(z) = 2θz/h and we
consider small values of ϕ such that (1 − ϕ)−1 ∼ 1 + ϕ. The dimensionless equations
for the evolution of θ and h over t gives then, with ∂r = ∂/∂r
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Figure 11. Evolution of the fraction of fluid as a function of time (non-dimensional). Solid
line: evolution of θ for ϕ = 2θz/h. We use in that case ∂rh � −hs/rs , ∂rθ � 0. Dashed line:
evolution of φs obtained by scaling analysis (3.1) and (3.2), using ϕ = φ + (z − h/2)θ/h and
θ � φ. Bold line: numerical calculations giving the radial average 〈φ〉 for ϕ = φ+(z−h/2)θ/h
and θ � φ. In all cases ν � 1 and σ � 1.

We have shown in § 3 that in the case of constant volume flows the volume
fraction of fluid does not vary significantly with r near the centre. For simplicity, we
apply the same scaling analysis to (E 1) and (E 2), i.e. ∂rθ � 0, ∂rh � −hs/rs and
Vm = πr2

s hs(1 − θ). This gives
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Results of the numerical solutions to (E 3) and (E 4) in terms of evolution of
average fluid fraction with time are shown in figure 11. Because the fluid fraction at
the top is twice the average fluid fraction, the loss of fluid is faster than in the case
of small variations of ϕ over z. We still observe a change in the regime when t � 1
or hs � 1. Half of the fluid is lost in a period of 1T ; but the loss of fluid is complete
in a comparable time of ∼10T .

Initially, because of fluid and matrix mixing, a fluid fraction held constant over
z is probably more relevant for natural settings. As long as the loss of fluid is not
significant (i.e. t < 1, h < 1 for a Darcy flow), a constant value for ϕ over z is
reasonable. Thus, significant fluid loss starts at t ∼ 1 for Darcy flow, after which ϕ

may vary significantly with z. However, regardless of this vertical variation, the total
release of fluid occurs in 10T (for Darcy flow).
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